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A physical mechanism for the long-wave instability of thin liquid films is presented. 
We show that the many diverse systems that exhibit this instability can be classified 
into two large groups. Each group is studied using the model of a thin liquid film with 
a deformable top surface flowing down a rigid inclined plane. In  the first group, the 
top surface has an imposed stress, while in the other, an imposed velocity. The 
proposed mechanism shows how the details of the energy transfer from the basic 
state to the disturbance are handled differently in each of these cases, and how a 
common growth mechanism produces the unstable motion of the disturbance. 

1. Introduction 
A large amount of research on the behaviour of thin liquid films has been done in 

the last half century because of the prevalence of such films in technologically 
important processes. Liquid films are used to remove heat from solid surfaces and 
they appear as condensate films on cold surfaces. In coating technology, the 
behaviour of the initial liquid film can affect the quality of the final coated surface. 
Thin films are also used as lubricant layers for the flow of crude oil in pipes and 
channels. The research on thin liquid films has investigated systems that are 
isothermal, that are heated or cooled, that are composed of several liquid layers with 
density and/or viscosity stratification, and films that are contained within pipes or 
channels. Driving forces include moving boundaries, gravity, applied pressure 
gradients, shear stresses, and thermocapillarity . 

One interesting feature of thin liquid-film flows is the appearance of an instability 
in the form of a surface wave whose wavelength is much larger than the depth of the 
film. Since the instability can occur a t  very low values of the Reynolds number, it 
is important to understand it thoroughly. This long-wave instability has been 
examined both theoretically and experimentally by a large number of investigators. 
The pioneering theoretical work was done by Benjamin (1957) and Yih (1963, 1967), 
but Binnie (1957), Kao (1965a, b, 1968), Lin (1975), Akhtaruzzaman, Wang & Lin 
(1978), Wang, Seaborg & Lin (1978), Hickox (1971), Smith & Davis (1982), Joseph, 
Renardy & Renardy (1984), Goussis & Kelly (1985, 1988), Hooper (1985), Renardy 
(1987a, b ) ,  Lister (1987), Than, Rosso & Joseph (1987), Smith (1989), Kelly et al. 
(1989), and many others have made contributions to this problem. 

The theoretical stability problem is particularly simple because one can use a 
regular perturbation expansion to obtain the critical Reynolds number. However, in 
spite of this simplicity, there has been very little discussion of the physical 
mechanism of the long-wave instability. 

Yih (1967) states that the long-wave instability of an isothermal film flow on a 
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rigid inclined plane obt'ains its power from the longitudinal component of gravity. 
This is true, but what is the process through which gravity does work on the 
disturbance ? What forces or flows are involved in creating the unstable motion of the 
interface ? A mechanism which answers these questions would provide an 
understanding of this instability that could unify all the separate results that have 
been obtained to date. 

Kelly et al. (1989) have provided one explanation for this mechanism by 
considering the flow of a single liquid film on a rigid inclined plane. The first part of 
their work was a disturbance energy analysis of the film flow for a disturbance of 
arbitrary wavelength. They identified the various contributions to  the disturbance 
encrgy and found that when a film is unstable to long-wavelength disturbances, the 
disturbance energy increases because of the work done by a perturbation shear stress 
induced on the interface when it is displaced. They also presented a mechanism for 
the physical increase in the interfacial displacement of an unstable film by modifying 
the vorticity argument given by Hinch (1984) for the short-wave instability of an 
interface first studied by Hooper & Boyd (1983). 

I n  the present work, we shall describe an alternative mechanism for the long-wave 
instability that does not invoke vorticity. This mechanism is composed of two parts ; 
an initiating mechanism that drives the dominant motion in a perturbed film, and a 
growth mechanism that produces the unstable motion of the interface. 

There are two different initiating mechanisms that can excite the long-wave 
interfacial instability in a thin film. We shall isolate these mechanisms by considering 
two model problems. The first is the familiar single liquid film flowing down a rigid 
inclined plane, bounded above by a gas. In  this system, a tangential-stress boundary 
condition is imposed on the interface. For reasons which will become clear in the 
next section, we shall refer to the resultant long-wave instability as stress-induced. 
The second model is also a single liquid film flowing down a rigid inclined plane, but 
bounded above by a moving compliant surface (a thin elastic plate). Here, a 
tangential-velocity boundary condition is imposed on the interface and the resultant 
long-wave instability is velocity-induced. This distinction between the two different 
types of long-wave instability that are possible in isothermal liquid films has also 
been noted by Goussis & Kelly (1988). 

The growth mechanism to be described is very general in that it outlines the proper 
sequence of events for the instability to occur in both of these models, even though 
the details of how the initial motion is induced are quite different. The mechanism 
also gives us a means to approximate the critical Reynolds number for these flows 
without having to solve the complete eigenvalue problem. 

In 92, we shall consider the model for the stress-induced instability and briefly 
present the essential results of the long-wave stability calculation. The physical 
mechanism will then be described and we shall show how the mathematical analysis 
supports this mechanism. In $3, we shall do the same for the model of the velocity- 
induced instability. A more general discussion of the instability mechanism for both 
of these film flows is presented in $4, along with a simplified model of the instability. 
Finally, in $ 5 ,  we state our conclusions and suggest further extensions to the 
mechanism. 

2. Stress-induced instability 
The simplest fluid system that exhibits the stress-induced instability is an 

isothermal liquid film of uniform depth h, density p ,  and dynamic viscosity p, flowing 
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FIGURE 1. The geometry of the liquid film on a rigid inclined plane. The top surface is either a 
free surface with an imposed stress or a compliant surface with an imposed velocity. 

down a rigid plane that is inclined a t  the angle /3 with respect to  the horizontal. The 
film is bounded above by a gas which exerts a shear stress 7t on the interface. This 
geometry is shown in figure 1.  The stability of the free film with rt = 0 was first 
studied theoretically by Benjamin (1957) and Yih (1963), while Smith & Davis (1982) 
included the non-zero surface stress to model the wind stress of the overlying gas. 

The characteristic scales for the velocity, length, time, and pressure are l J s  = pgh2 
sin (p)/,u, h,  h/U,, and ,uUs/h respectively. These scalings produce the following 
dimensionless groups : the Reynolds number R = p29h3 sin (p)/,u2, the capillary 
number Ca = pgh2 sin (/3)/cr, and the dimensionless surface stress 7 = rt/pgh sin (p). 

The basic state in this system is a steady, parallel shear flow driven by gravity and 
the applied shear stress. It is written in dimensionless form as 

a =  (l+r)y-+y2, p = C o t ( p ) ( l - y ) ,  (2 . la ,  6 )  

a=O, r = 1 .  (2 . l c ,  d) 

The stability of this flow is examined using a standard linear stability analysis. The 
resulting two-dimensional, normal-mode disturbance equations are 

R(ia(u-c) Zi + = - ia$ -t D2Zi -a2& ( 2 . 2 4  

D6+ iazi = 0, (2.2c) 

B = ia(u(l)-c)?j, Dzi+iaB = -a”(l)?j on y = 1 (2.2e, f 1 

(2.29) 

iaR(a-c)6 = -Dfi+D26-a26, (2 .2b )  

zi=v”=0 o n y = O ,  (2.2d) 

-1; + 2DB = -cot (P)?j + 2 i a ~ ’ (  1) i j  - Ca-la2?j on y = 1. 

Here, Di = dj/dy3‘ for j = 1,2 ,  a is the wavenumber of the disturbance, and c = 
c, + iq is a complex eigenvalue with c, the phase speed and aci the growth rate of the 
instability. 

The mechanism for the long-wave instability of this system can be seen in the 
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ordered problems that arise when the above eigenvalue problem is examined using 
a regular perturbation expansion for a+O. Yih (1963) was the first to apply this 
technique to this problem, although he used the equivalent streamfunction 
formulation of the normal-mode equations. Using the long-wave expansions 

.li = uo+aul+a2u,+ ..., ( 2 . 3 ~ )  

4 =av1+a*v2+ ..., (2 .3b )  

@ = p o + a p l + a 2 p 2 +  ..., 
4 = ?j0+aq1+a2q,+..., 

( 2 . 3 ~ )  

(2.3d) 

c = co+ac,+a2c,+ ..., (2.3e) 

and the normalization qo = 1,  qr = 0, j = 1 ,  2 ,  3 . . . ,  we obtain the following ordered 
problems and their solutions. At O ( l ) ,  

D’u, = 0, ~ ~ ( 0 )  = 0, Du,(l) = 1,  (2.4u, b ,  c) 

And at) O(a2), 

Dv,+iuo = 0, vl(0)  = 0, co = a(l)+iwl(l) ,  (2.6u, b, c) 

vl(y) = -i+y2, co = 1 +7 .  

D2ul = ipo+ iR(a--c,) uo +RG’w,, 

(2 .6d,  e )  

( 2 . 7 ~ )  

u,(O) = 0, Dul(l) = 0, (2.7 b ,  c )  

(2 .7d )  ul(y) = i cot(P){&f - y} + iRc,{&y4 -&3 +iyj. 

Setting ci = 0, we obtain the critical Reynolds number 

(2.9) 

This is the result of Smith & Davis (1982) for a film with a non-zero wind stress. It 
is also the result obtained by Benjamin (1957) and Yih (1963) for r = 0 when the 
difference in the velocity scale is considered. Note that the flow has a long-wave 
instability only when the phase speed of the disturbance is not contained in the range 
of a. 

For simplicity in the following discussion, we shall set 7 = 0 and discuss the 
physical mechanism of the long-wave instability in terms of the free film. However, 
the ideas we shall present are equally applicable to  the more general case of a non- 
zero surface shear stress. 

The initiating mechanism can be seen with the help of figure 2 .  Consider a 
sinusoidal disturbance to the free surface, 7’. When the interface is deflected upward, 
the basic state has a shear stress a t  the new interface position because of the 
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FIGURE 2. The development of an interfacial perturbation shear stress due to a disturbance on 
a free-surface film. 

curvature of the velocity profile. This shear stress acts in the x-direction and it is 
equal to a"(1)f. Since the interface is a stress-free surface, a perturbation shear 
stress develops at the undisturbed interface position that exactly cancels the stress 
due to the basic state; see (2.2f). This perturbation shear stress drives a longitudinal 
flow underneath the disturbance crest that is linear and varies directly with the 
displacement of the interface as shown in figure 3 and equation (2.4d). This 
longitudinal shear flow is the dominant motion in the disturbed film and i t is  the end 
result of this initiating mechanism. Since i t  is driven at the interface, the energy for 
the flow comes from the work done by the perturbation surface shear stress. This is, 
and will remain, the dominant source of energy for the disturbance. To leading order, 
it is exactly balanced by viscous dissipation in the film. These observations agree 
completely with the disturbance energy analysis for this flow done by Kelly et al. 
(1989). These authors also described this initiating mechanism in much the same 
way. 

The leading-order disturbance shear flow, shown in figure 3, is predominantly a 
parallel flow because the wavelength of the disturbance is large compared to the 
depth of the film. Its maximum amplitude occurs a t  the point of the maximum 
surface deflection. At the two node points, the deflection and the shear flow are both 
zero. I n  figure 4, we show a control volume enclosing the film on the right-hand side 
of a disturbance crest. There is a net inflow on the left-hand side of the control 
volume, but no outflow on the right-hand side. To conserve mass, the interface must 
be deflected in the positive y-direction. Likewise, for a control volume on the left- 
hand side of the crest, the interface must move in the - y-direction. The net result of 
this behaviour is a wave motion of the disturbance to  the right. The phase speed 
relative to  the surface speed is related to  the normal-mode volume flux of the 
disturbance by 

Since a(l) = t ,  co = 1. Note that  the maximum velocity of the film is at the free 
surface and so the disturbance moves faster than any fluid particle in the film. 

The remaining leading-order effect of the disturbance is an increase in the 
hydrostatic pressure in the liquid under an interfacial elevation that is directly 
proportional to the component of gravity normal to the film, cot (p), and to the 
displacement of the interface; see ( 2 . 5 ~ ) .  

The growth mechanism of the instability uses the energy contained in the leading- 
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FIGURE 3. The leading-order longitudinal flow perturbation in the film. The long-dash line is 
the undisturbed free-surface position. 

I 
I Qout = 0 - 

FIGURE 4. A disturbance to the free surface. The short-dash line on the right-hand side of the crest 
is the control volume V,. The disturbance velocity profile on the left-hand side of the control volume 
is linear. There is no disturbance outflow. The long-dash line is the undisturbed free-surface 
position. 

order shear flow to producc the unstable growth of the intcrfacial displacement. 
System (2.7a-c) is the key to this mechanism. It describes a shear flow in a film with 
one rigid and one free surface driven by the pressure and the inertial stresses from 
the leading-order disturbance flow. We can understand this flow by considering the 
simpler problem, 

(2.10) D2ul-i@ = 0, u,(O) = Du,(l) = 0, 

where 9 is a real constant representing the pressure in the film. Like Yoiseuille flow 
in a channel, this equation represents a balance between the normal-mode forms of 
the viscous-stress gradient D2u1 and the pressure gradient - i3. When fj is positive, 
the pressure in the film is directly in phase with the surface deformation. Thus, the 
maximum pressure lies a t  the position of maximum interfacial deformation and 
decreases to each side. This pressure distribution drives a viscous flow that moves 
fluid away from the disturbance crests and towards the disturbance depressions, as 
shown in figure 5 ,  producing a loss of mass under the crest and a decrease in the 
interfacial elevation. Thus, @ > 0 represents a stabilizing effect on the film because 
the resulting longitudinal flow decreases the surface deformation. 

We can now us(: this idea to predict the behaviour of the flow described by 
(2.7a). Here, there are three separate driving stresses for the shear flow. The first, 
p ,  = cot (p), is the extra hydrostatic pressure due to the displacement of the interface. 
Since it is positive, it pushes fluid away from the crest. It is a stabilizing effect. 

The next two driving stresses arise from acceleration effects in the fluid and can be 
called inertial stresses. The first inertial stress, R(%-c,) u,, is produced because of 
advection of the leading-order longitudinal velocity perturbation by the basic-state 
velocity relative to  the moving disturbance. It is always negative because u, > 0 and 
a-c, < 0 for Y E  (0, 1 ) .  Thus, it tends to push fluid underneath the crest and so it has 
a destabilizing effect on the film. The second inertial stress, Ra’( - iul) ,  is produced 
because of the advection of the basic-state velocity by the leading-order normal 
velocity perturbation. It is also negative in the entire film and so i t  has a destabilizing 
effect. 

The three driving stresses in (2 .7a)  produce the longitudinal flows shown in figures 
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FIGURE 5. The direction of the disturbance film flow and the interfacial motion when a positive 
pressure lies underneath a disturbance crest. The long-dash line is the undisturbed free-surface 
position. 
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FIGURE 6. The first-order perturbation flows in a free-surface film owing to film stress for neutral 
conditions at  /3 = 45’. (a) The flow caused by the hydrostatic pressure under a disturbance crest, 
( b )  the flow caused by the inertial stress due to the leading-order longitudinal velocity perturbation 
R(~-c,)u, ,  and (c) the flow caused by the inertial stress due to the leading-order normal velocity 
perturbation R d (  -ivl). 

6 (a+). Each of these flows behaves exactly as we have predicted. These longitudinal 
flows in turn produce a normal motion of the interface given by 

(2.11) 

Since ci = w2(1), we see that the first term represents the stabilizing effect of the 
normal component of gravity and the last two represent the destabilizing effect of the 
inertial stress associated with the leading-order longitudinal and normal velocity 
perturbations respectively. Note that the inertial stress due to the longitudinal 
velocity perturbation is seven times larger than that due to the normal velocity 
perturbation. 

When the terms in (2.11) are arranged in another manner, we find 

w2( 1)  = - 5 cot (p) + &J - $$. (2.12) 

Here, the second term represents the destabilizing effect of the inertial stress due to  
the advection of the leading-order longitudinal velocity perturbation by the motion 
of the disturbance a t  the phase speed c,. The third term is the net stabilizing effect 
of the inertial stresses due to advection associated with the basic-state velocity 

16 FLM 217 
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PICURE 7. A schematic of the fluid advection interactions that produce the inertial stresses in a 
liquid film. ( u )  The advection of the leading-order longitudinal flow perturbation by the basic-state 
velocity relative to the moving disturbance to produce the negative inertial stress R ( E -  c,,)uo, (6) 
the film flow and the induced interfacial motion produced by the negative inertial stresses of both 
(a) and (c) ,  and ( c )  the advection of the basic-state velocity by the leading-order normal flow 
perturbation to produce the negative inertial stress R%'( - ivJ. The long-dash line is the 
undisturbed free-surface position. 

profile and the leading-order longitudinal and normal velocity perturbations. The 
unsteady effect of the wave motion dominates the effects of the convective 
acceleration terms. This is also true in the more general case of the film with an 
applied stress on its top surface. Thus, the unsteadiness associated with the moving 
disturbance is the dominant cause of the long-wave instability in this film. 

A useful approximation to the behaviour of this system is the average driving 
stress for the film flow of (2.7a). If the average stress is positive (negative), we can 
estimate that the flow is stable (unstable). The average film stress is defined as 

9 = {po+R(~-cc,)uo+R~'(-iw,))dy. I: (2.13) 

For this system, we find 

p =  cot(/3)-&B-+&!= cot(/?)-$. (2.14) 

To estimate the critical Reynolds number, we set j3 = 0 and find R, = 3 cot (p) ; a 
result 20% higher than the exact value of R, = 

Another way to understand the flows produced by the inertial stresses is to 
consider the acceleration effects of ( 2 . 7 ~ )  directly. Consider a coordinate system 

cot(P). 
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moving with the phase speed of the disturbance so that the flow in the film is 
everywhere to the left. This flow interacts with the leading-order longitudinal 
velocity perturbation uo, shown in figure 3, and produces a negative inertial stress. 
In  figure 7 ( a ) ,  we see a fluid particle just to the left of the crest and the associated 
perturbation flow profile, uo. The basic flow moves this particle to the left to a region 
where the perturbation flow is smaller. Thus, given what the disturbance expects to 
find a t  this location, the particle looks as if it has gained a velocity perturbation to 
the right, toward the crest. Likewise, to the right of the crest, the basic-state flow 
moves particles with a smaller longitudinal perturbation velocity to regions with a 
larger velocity. In this new location, the particle looks as if it has been given a 
velocity perturbation to the left, towards the crest. The resulting destabilizing flow 
is shown in figure 7 (b ) ,  and it is exactly the same as the flow produced by the negative 
inertial stress. 

The flow produced by the inertial stress associated with the leading-order normal 
perturbation velocity is described in a similar way. Here, we have a negative inertial 
stress produced through the interaction of G’ > 0 with -iv, < 0. I n  figure 7 (c), we see 
that the normal perturbation velocity is upwards on the right-hand side of the crest 
and downwards on the left. On the right-hand side, the normal velocity moves fluid 
with a faster upstream basic-state velocity into a region with a smaller upstream 
velocity. The equivalent velocity perturbation for the fluid a t  this point is towards 
the crest. On the left-hand side of the crest, the downward normal velocity moves 
fluid with a slower upstream basic-state velocity into regions with a faster upstream 
velocity. The equivalent velocity perturbation will also be towards the crest. The net 
efYect i s  again the destabilizing flow shown in figure 7 ( b ) .  

3. Velocity-induced instability 
The simplest fluid system that exhibits the velocity-induced long-wave instability is 
an isothermal liquid film flowing down a rigid inclined plane, but bounded above by 
a compliant surface. In a recent review, Riley, Gad-el-Hak & Metcalfe (1988) 
discussed the modelling of a compliant surface as a spring-backed, elastic plate with 
damping. We shall use the simplest such model in which the elastic plate has no mass, 
no bending stiffness, no damping, and it is not backed with springs. Thus, the upper 
compliant surface is just a thin elastic plate that  moves parallel to the lower rigid 
plate a t  the velocity U,. The geometry is shown in figure 1. We scale the velocity, 
length, time, and pressure as we did for the liquid film bounded by a gas and replace 
the tangential-stress boundary condition on the top surface by the no-slip condition. 
With these scalings, we obtain the dimensionless velocity of the compliant surface 
U = U,/U, and must redefine the capillary number in terms of the longitudinal 
tension u of the elastic plate. 

The basic state is a steady, parallel shear flow given by 

G =  &I-$)+ uy, p = cot (p) (1 -  y ) ,  (3.1 a,  b) 

B =  0, v =  1.  (3.lc, d )  

Thenormal-mode disturbance equations for this model are given by system (2.2a-g), 
except that the boundary condition (2.21) is replaced by the velocity boundary 
condition 

d(1) = -G’(i)?j. ( 3 4  
16-2 
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The ordered problems from the perturbation analysis for long waves on this system 
are as follows. At O ( l ) ,  

And at O ( a 2 ) ,  

D2uo = 0,  ~ ~ ( 0 )  = 0,  ~ ~ ( 1 )  = i - U ,  

UO(Y) = (B-U)Y, 

Po(!/) = cot(P). 

DPO = 0, PO(1) = cot (P), 

Dw, +iuo = 0, v,(O) = 0,  

vl(y) = -i$(t-U)y2, 

co = a( 1 )  + iw,( l), 

co = +(U+a), 
D2u, = ipo + a(%- co) uo + Rtt'v,, 

u,(O) = 0,  ul ( l )  = 0, 

Ul(Y) = icot (p )~y2 - -Y )+ iR~v" -~ } { -8y4+y3-~ } .  

Dv, + iu, = 0, v2(0) = 0, c1 = iw,( l), 
V,(Y) = cot(P)Ktv3-atv2}++R~U"-a>c-~~5+~y 1 4 - 1  4y 2 }, 

c, = i$-cot(p)+R&(1-4V)}. 

The critical Reynolds number is 40 cot (p) R, = 
1 - 4 V  * 

(3 .3a ,  b ,  c )  

( 3 . 3 d )  

(3 .4a,  b)  

(3.44 

(3 .5a ,  b ,  c )  

(3 .5d ,  e )  

( 3 . 6 ~ )  

(3.66, c )  

(3 .6d)  

( 3 . 7 ~ 4  b, c )  

(3.7 d )  

(3.7e) 

(3 .8)  

Note that the flow has a long-wave instability only when the phase speed of the 
disturbance is not contained in the range of a. 

For simplicity in the following discussion, we shall set U = 0. But again, the ideas 
presented are applicable to the more general case of non-zero U. 

The only fundamental difference between the mechanism for this velocity-induced 
instability and that of the stress-induced instability studied in the previous section 
is the initiating mechanism. In figure 8, we see that when the interface is deflected 
by a disturbance, the basic-state will have a velocity a t  the new interface position 
that is different from the true interfacial velocity. This velocity is in the x-direction 
and it is equal to ~ ' ( l )? ' .  Since the interface is a no-slip surface, a perturbation 
velocity develops a t  the undisturbed interface position that exactly cancels the 
velocity due to the basic state, as shown in (3 .2) .  This perturbation velocity drives 
a longitudinal flow underneath the disturbance crest that is linear and varies directly 
with the displacement of the interface as shown in figure 3.  Thus, the energy for the 
disturbance flow comes from the work done by the perturbation velocity at the 
compliant surface. To leading order, this work is exactly balanced by viscous 
dissipation in the film. Hinch (1984) described a version of this initiating mechanism 
for the case of an interface between two immiscible fluids as did Goussis & Kelly 
(1988). 

The establishment of the leader-order longitudinal flow is the end result of the 
separate initiating mechanism for this model. After this point, the motion in the film 
is governed by the same processes as the instability in the film flow bounded above 
by a gas. 

Following the control-volume argument given in the previous section (see figure 4), 
we see that the surface disturbance moves downstream relative to the interface. In 
fact, the phase speed co = 2 and so the disturbance moves faster than any fluid 
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FIQURE 8. The development of an interfacial perturbation velocity owing to a disturbance on a 
film with a stationary compliant top surface. 

u1 UI 

FIGURE 9. The first-order perturbation flows in a film with a stationary compliant top surface owing 
to film stress for neutral conditions at  = 45'. (a) The flow caused by the hydrostatic pressure 
under a disturbance crest, ( b )  the flow caused by the inertial stress due to the leading-order 
longitudinal velocity perturbation R(~--c,)u, ,  and ( c )  the flow caused by the inertial stress due to 
the leading-order normal velocity perturbation Ra'( - i q ) .  

particle in the film, the fastest of which is ~ ( 4 )  = Q. This behaviour is the same as that 
of the free-surface film. 

I n  system (3.6a-c), we see that the growth mechanism of the instability involves 
a film flow similar to the one found for the free-surface film. The only difference is a 
rigid versus a free top surface. The first driving stress in the film is again p ,  = cot (p), 
the stabilizing hydrostatic pressure due to the displacement of the top surface and 
the component of gravity normal to the film. 

The inertial stress produced by the advection of the leading-order longitudinal 
velocity perturbation by the basic-state velocity relative to  the moving disturbance, 
R(a-co)uo, is always negative because uo > 0 and a-c, < 0 for YE (0, 1). Thus, it is 
a destabilizing effect. The inertial stress produced by the advection of the basic-state 
velocity by the leading-order normal velocity perturbation, B d (  - ivJ, is negative in 
the lower half of the film and positive in the upper half because of the change in sign 
of G' = 3-22~) .  Since I -iwJ is larger in the upper half of the film, this inertial stress 
has a net stabilizing effect. 
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These three stresses produce the longitudinal flows shown in figure 9. These flows 
in turn produce a normal motion of the interface given by 

~ ~ ( 1 )  = -&cot (p)+&jR-&$. (3.9) 

Since ci = v2(l), we see that the first term represents the stabilizing effect of 
gravity, the second term represents the destabilizing effect of the inertial stress 
associated with the leading-order longitudinal velocity perturbation, and the last 
term represents the stabilizing effect of the inertial stress associated with the leading- 
order normal velocity perturbation. 

A rearrangement of the terms in (3.9) yields 

w2( 1)  = - & cot (p) + +$ - &$. (3.10) 

Here, the second term represents the destabilizing effect of the inertial stress due to 
the advection of the leading-order longitudinal velocity perturbation by the motion 
of the disturbance a t  the phase speed co. The third term is the net stabilizing effect 
of the inertial stresses due to advection associated with the basic-state velocity 
profile and the leading-order longitudinal and normal velocity perturbations. The 
unsteady effect of the wave motion dominates the effects of the convective 
acceleration terms. This is also true in the more general case in which the compliant 
top surface of the film is given a non-zero velocity. Thus, the unsteadiness associated 
with the moving disturbance is the dominant cause of the long-wave instability in 
this film. 

The average film stress for this flow is 

9 = COt(P)-&R+&qR = cOt(P)-&qR, (3.11) 

The critical Reynolds number from this approximation is R, = 48 cot (p) ; a result 
20 YO higher than the exact value of R, = 40 cot (p). 

4. Uniform-flow instability 
The discussion in the previous two sections was primarily concerned with the 

details of the long-wave instability mechanism in thin liquid films. Now, we shall 
consider the instability mechanism in more general terms. The two film-flow models 
we have studied have several common features. In  each model, (i) the interface is 
deformable normal to itself, (ii) the basic-state flow plus the leading-order 
perturbation flow behaves like a fully-developed viscous film flow driven by gravity 
and by the forcing of the top surface, (iii) the phase speed of an unstable long-wave 
disturbances is not contained in the range of the velocity in the undisturbed film, and 
(iv) unsteady inertial effects are the primary cause of the long-wave instability. 

Using these observations we can describe the long-wave instability of liquid films 
in very simple terms. We shall confine ourselves to either a free film or a film with 
a stationary compliant top, but we note that these ideas are equally valid for the 
more general forced cases. Consider a disturbance to either of these liquid films in 
which the top surface is deflected upward slightly over a lengthscale that is much 
longer than the depth of the film. Because the height of the top surface varies slowly 
in the streamwise direction, the velocity profile a t  each streamwise location will 
approximate a fully-developed viscous film flow. For both of these films, it can be 
shown that the net longitudinal flow rate in the film is positive and that it increases 
with the depth of the film. Thus, a t  the crest of the deflection the longitudinal flow 
rate is a maximum and it  decreases to each side. The net result of this is that gravity 
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draws fluid toward the front face of the crest, deflecting it upward, and gravity 
drains fluid from the rear face, deflecting i t  downward. This behaviour produces a 
forward motion of the disturbance without growth a t  a phase speed larger than the 
velocity of any fluid particle in the undisturbed film. 

Now, at a particular instant in time, consider an x-location that is at the front face 
of a disturbance crest. Here, the surface height is increasing because of the forward 
motion of the disturbance. The flow in the bulk of the film is accelerating a t  this 
position because it is attempting to follow the fully-developed viscous velocity profile 
dictated by the surface height. However, inertial effects prevent the flow from 
accelerating fast enough to  completely follow this velocity. The result is that the 
volume flux in the film is not as large as it should be if this was truly a fully-developed 
film flow. At the rear face of the crest, the velocity is decelerating, but inertial effects 
prevent the flow from decelerating completely enough. Thus, the volume flux in the 
film is larger than that due to a fully developed film flow. The net effect of these two 
volumes fluxes is an accumulation of fluid underneath the disturbance crest and an 
increase in the interfacial displacement. This is the destabilizing effect of the 
unsteady motion of the disturbance on the viscous film flow. 

There are also convective acceleration effects in this flow that are stabilizing. On 
the front face of the crest, the flow is moving in a direction of decreasing surface 
height. As it does so, it niust decelerate to follow the fully-developed viscous film 
flow. Inertial effects prevent the velocity from decelerating as completely as needed 
resulting in a flow slightly faster than expected for a fully-developed film flow. 
Similar arguments for the rear of the crest show that the longitudinal volume flux a t  
this point is not as large as expected. The net result is a depletion of the fluid from 
under the disturbance crest. This is a stabilizing effect, but i t  is never larger than the 
destabilizing effect of the unsteady motion of the disturbance. Therefore, the overall 
effect of inertia is destabilizing. 

The disturbance also produces an increase in the hydrostatic pressure under the 
crest proportional to the local depth of the film. This pressure tends to push fluid 
away from the disturbance crest resulting in a depletion of the fluid under the crest 
and a decrease in the depth of the film. This stabilizing flow competes with the 
inertial accumulation of fluid under the crest. If the inertial effect, as measured by 
the Reynolds number, is large enough, the film is unstable and the disturbance 
grows. 

The long-wave instability mechanism described in this simple way can be 
displayed using a very simple flow model. Consider the liquid film on the inclined 
plane shown in figure 1, and model the flow of the liquid in this film with a uniform 
velocity profile. The flow is driven by the longitudinal component of gravity and by 
a longitudinal pressure gradient that  is a result of the hydrostatic pressure produced 
by the long-wave deformation of the top surface and the normal component of 
gravity. We shall assume that some resistance to the flow occurs near the lower rigid 
boundary and at  the upper surface, if i t  is compliant. This resistance takes the form 
of a shear stress that we model as being linear with respect to the longitudinal 
velocity of the liquid. Given this model, the following scaled equations of momentum 
and mass can be derived, 

(4.1) Ry{u, + uu.,} + u = 7/{ 1 - cot (p) 7/,> 

Here, u is the longitudinal velocity and 7 is the interfacial position. The parameter 
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R in the first equation is a Reynolds number for the flow measuring the relative 
importance of inertia to friction and cot (p) is a measure of the hydrostatic pressure 
gradient. Jeffreys (1925) used this same model, but with a shear stress on the inclined 
plane that was proportional to the velocity squared. Thus, he obtained the same 
equations, but with a u2 instead of a 21 for the third term on the left-hand-side of (4.1). 

The basic-state flow in this model is simply ti = 7 = 1. A linear stability analysis 
of this flow produces the normal-mode disturbance equations 

i&(a-c)d+d = Ilj-iacot (p)Ilj, 
0 = ia(a-c)Ilj+iaG. 

(4.3) 

(4.4) 

The long-wave approximation to the solution of these equations is 

4 = l+ia{(c,-a)R-cot(P))+ ... (4.5) 

c = c,+ia{(c,-a)R-cot(P)}+ ... (4.6) 

c 0 = 2 ,  + = 1 ,  (4.7a, b)  

in which the last equation is a convenient normalization for the system. This 
film flow has a long-wave instability in which the critical Reynolds number is 
R, = cot (p). 

At the node point in front and at the back of a disturbance crest, 7’ = 0 and the 
disturbance velocity in the film is 

(4.8) 

where di = ci = a(R-cot @)I. When the film is unstable, R > cot (p) and the 
disturbance flow in the film is to  the left in front of the crest and to the right behind 
the crest. This leads to  the accumulation of fluid under the crest and the disturbance 
grows. 

The flow described by this simple model corresponds exactly to our description of 
the long-wave instability given a t  the beginning of this section. The basic-state flow 
plus the leading-order perturbation corresponds to a fully-developed flow in which 
the velocity is given by the local depth of the film. At the next order, the unsteady 
term produces a destabilizing longitudinal flow, the convective acceleration term 
produces a stabilizing longitudinal flow that is not as large as that produced by the 
unsteady term, and gravity produces a stabilizing longitudinal flow. We also see that 
the phase velocity of the disturbance is larger than the fluid velocity in the film. 

The major features of the unstable flow in this simple model are also found in the 
previous models for a viscous film flow with either a free or a compliant upper 
surface. In  addition, the only energy source for the disturbance in the uniform-flow 
model is the work done by the longitudinal body force on the disturbance. This is 
consistent with the disturbance energy analysis of Kelly et al. (1989), which shows 
that the energy for the disturbance in the viscous-flow models comes from the work 
done by perturbation surface shear stresses or surface velocities. These effects 
contain the details of the mechanism through which energy is pumped from the basic 
state to the disturbance. However, the energy in the basic state is there as a result 
of the work done by the longitudinal body force and the forces on the top surface. 
Thus, the detailed initiation mechanisms we described earlier are simply ways to 
describe how the longitudinal body force does additional work on the flow. This 
process is shown in a more transparent fashion in the uniform-flow model. These 

u’ = T zii exp (aci t ) ,  
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results tell us that the uniform-flow model has captured the essence of the long-wave 
instability in thin liquid films. 

5. Conclusions 
We have described a physical mechanism for the long-wave instability that 

appears in thin liquid films. This mechanism gives a clear understanding of how a 
disturbance to  the interface produces a motion in the film, and how this motion 
amplifies the disturbance. The complete detailed mechanism is composed of two 
parts; an initiating mechanism that produces the dominant motion in the film, and 
a growth mechanism that produces the unstable motion of the interface. 

There are two different initiating mechanisms that can operate in liquid films, each 
one corresponding to a different type of boundary condition on the interface. The 
first mechanism is associated with the tangential-stress boundary condition on the 
interface. When the interface is deformed, a perturbation shear stress is induced such 
that the total interfacial shear stress a t  the undeformed interface position remains 
constant. The magnitude of this induced shear stress is proportional to the curvature 
of the basic-state velocity a t  the interface. The primary effect of the stress 
perturbation is to drive a longitudinal flow perturbation in the film and the work 
done by this stress is the main energy source for the instability. A liquid film on a 
rigid inclined plane bounded above by a free surface is the simplest system that 
exhibits this kind of behaviour. 

The second mechanism is associated with the tangential-velocity boundary 
condition on the interface. When the interface is deformed, a tangential-velocity 
perturbation is induced at the undeformed interface position such that the total 
tangential velocity remains fixed. The magnitude of the induced velocity is 
proportional to the gradient of the basic-state velocity a t  the interface. This 
perturbation velocity drives a longitudinal flow perturbation in the film and the work 
that it does a t  the interface is the main energy source for the instability. The simplest 
example of this mechanism occurs in a film on a rigid inclined plane bounded above 
by a thin elastic plate. 

In  film flows composed of more than one liquid layer, both mechanisms can be 
important. When each layer has a different density, a jump in the curvature of the 
basic-state velocity across the interface will occur and the stress-initiation 
mechanism will operate. Likewise, when the viscosity in each layer is different, a 
jump in the basic-state velocity gradient across the interface will occur and the 
velocity-initiation mechanism will operate. This kind of behaviour has been 
demonstrated by Goussis & Kelly (1988) using a disturbance energy analysis of a 
two-layer flow in an inclined channel. 

The growth mechanism of the instability produces the unstable motion of the 
interface and i t  operates regardless of the method of initiation. The leading-order 
velocity perturbations produced by the initiating mechanism interact with the basic- 
state velocity relative to the moving disturbance to produce inertial stresses that are 
proportional to the Reynolds number. When an inertial stress is positive, it drives a 
first-order flow perturbation that is away from disturbance crests and toward 
disturbance troughs. Such a flow reduces the interfacial deformation and is 
stabilizing. When an inertial stress is negative, the opposite destabilizing flow occurs. 
In  the two films discussed here, the dominant inertial stress, which is destabilizing, 
is always due to the interaction of the leading-order longitudinal perturbation flow 
with the unsteady motion of the disturbance. Therefore, the net inertial stress in the 
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film produces a destabilizing flow that competes against the stabilizing flow created 
by the hydrostatic pressure field associated with the deformed interface. When the 
Reynolds number is large enough, the destabilizing flow dominates and the system 
is unstable. 

The inertial stresses used in the growth mechanism for this instability can be used 
to estimate a critical Reynolds number for the film flow. From the solution of the 
leading-order problem, we can calculate an average film stress in the entire film as 
shown in (2.13). Setting this equal to  zero produces an estimate for the critical 
Reynolds number. For both of the model flows examined here, this estimate was 
20% higher than the exact value. 

We have also described the mechanism of the long-wave instability in terms of a 
fully-developed, viscous film flow. When the interface of a thin film is deflected, the 
longitudinal flow in the liquid tends to follow the parallel, fully-developed viscous 
velocity profile dictated by the surface height. Thc first effect of this behaviour is a 
wave motion of the disturbance crest to the right since fluid is being drained from the 
left-hand side of the crest and pushed to the right. As this disturbance moves 
downstream, the flow in the film tries to stay in phase with the surface deflection. 
However, unsteady inertial effects prevent this and produce a flow with a phase lag 
behind the interfacial disturbance. The net result is an accumulation of fluid 
underneath the disturbance crest that increases the height of the disturbance. If the 
inertial effects are larger than the stabilizing effect of the normal component of 
gravity, the film is unstable. This mechanism for the long-wave instability is 
displayed very clearly in the uniform-flow model for the liquid film. 

It is possible to extend the long-wave mechanism described in this paper to  include 
flows of two or more layers bounded by rigid surfaces. This has been done by Smith 
(1989) for the stress-initiation mechanism in his study of a concentric two-phase flow 
in a vertical pipe. The extension lies in recognizing the existence of a large lubrication 
pressure that appears owing to the presence of the rigid boundaries. It is this 
lubrication pressure that accounts for the complicated behaviour of these systems as 
the geometry and stratification changes as shown by Smith (1989) and Renardy 
(1  987 b).  

These same arguments can also be applied to  the two-layer Couette flow first 
studied by Yih (1967), in which each layer has a different viscosity. This would be 
the simplest system that exhibits the velocity-induced instability and that includes 
the additional effects of the lubrication pressure. 
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